A NECESSARY AND SUFFICIENT CONDITION FOR 2 TO BE A PRIMITIVE ROOT OF $2 P+1$

V. P. RAMESH, R. THANGADURAI, M. MAKESHWARI AND SASWATI SINHA
(Received : 02-03-2020; Revised : 26-08-2020)

Abstract

Let p be an odd prime such that $2 p+1$ is a prime or prime power. Then, in this article, we prove that 2 is a primitive root of $2 p+1$ if and only if $p \equiv 1(\bmod 4)$.

1. Introduction

Gauss proved that the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{*}$ is cyclic if and only if $n=2,4, p^{k}$ or $2 p^{k}$ for all odd primes p and for all positive integers k. For such integers n, the generators are called primitive roots of n. Indeed, while studying the periods of rational numbers of the form $1 / p$ for a prime $p \neq 2$ or 5 , Gauss proved the above result and he conjectured that 10 is a primitive root of p for infinitely many primes p. Later E. Artin generalized this conjecture and gave a heuristic argument for a quantitative form of this conjecture and nowadays, it is well-known as Artin's primitive root conjecture [4]. Due to these conjectures there are many efforts leading to discoveries around primitive roots of n, to list a few $[1,4,5,6]$.

We will first set up some notations. For any $x \in \mathbb{R},[x]$ denotes the greatest integer function i.e., the largest integer less than or equal to x. A prime p is said to be a Sophie Germain prime [2] if $2 p+1$ is also a prime. It is expected that there is an infinitude of such primes. Let σ be an element of the symmetric group S_{n}. It is easy to observe that the following relation is an equivalence relation. For $i, j \in\{1,2,3, \ldots, n\}$, we say $i \sim j$ if there exists $k \in \mathbb{Z}$ such that $\sigma^{k}(i)=j$. The equivalence classes of this relation are called orbits of σ. Furthermore, $\sigma \in S_{n}$ is said to be a cycle of length ℓ,

[^0](C) Indian Mathematical Society, 2020.
if one of its orbits has ℓ elements and rest of them have only one element.

In this article, we prove the following results.
Theorem 1.1. Let p be an odd prime such that $2 p+1$ is a prime or prime power. Then 2 is a primitive root of $2 p+1$ if and only if $p \equiv 1(\bmod 4)$.

Lemma 1.2. Let p be an odd prime such that $2 p+1=q^{k}$ for some prime q and some integer $k \geq 2$. Then $q=3, k$ is a prime number and $p \equiv 1$ $(\bmod 4)$.

Lemma 1.3. For any natural number k, we have

$$
\left[\frac{2^{\phi\left(3^{k}\right)}}{3^{k}}\right] \equiv 1 \quad(\bmod 3)
$$

where ϕ is the Euler's totient function.
Corollary 1.4. For any natural number ℓ,

$$
\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right] \text { divides }\left[\frac{2^{\phi\left(3^{\ell+1}\right)}}{3^{\ell+1}}\right] .
$$

From Gauss we know that "For a prime p, if a is a primitive root of p and p^{2}, then a is a primitive root of p^{ℓ} for all $\ell \geq 3 "$. We consider a special case of this statement, namely for $a=2, p=3$ and in this article we present the following result which is a stronger result for this special case.

Lemma 1.5. For any $k \in \mathbb{N}, 2$ is a primitive root of 3^{k}.
Though, Lemma 1.5 can be proved using the above result of Gauss, in this article we have invoked Lemma 1.3 to give a self-contained proof of this lemma. It is to be noted that these lemmas are useful while proving Theorem 1.1.

In 1969, D. J. Aulicino and Morris Goldfeld [1] have studied the permutation $(n!)$ defined as $(n!)=\prod_{k=0}^{n-1}(1,2, \ldots,(n-k))$, i.e., the product of first n cycles. They observed a connection between a primitive root of $2 n+1$ and the permutation ($n!$) having only one orbit (which is called as a transitive permutation) and proved that for any natural number n, the permutation $(n!)$ is transitive if and only if $2 n+1$ is a prime for which 2 is a primitive root [1]. Therefore, we have the following natural corollary from Theorem 1.1.

Corollary 1.6. Let p be an odd prime. Then the permutation ($p!$) is transitive if and only if $2 p+1$ is prime and $p \equiv 1(\bmod 4)$.

We performed a few computations with primes up to 3×10^{6} and observed that about 4.515% of primes in the above range are such that $2 p+1$ is also prime with 2 as a primitive root. Furthermore, the primes 13,1093 and 797161 are the only primes in the above range for which 2 is a primitive root and $2 p+1$ is not prime. It is easy to observe that for the above listed primes, $2 p+1$ is an odd power of 3 , namely $27=$ $3^{3}, 2187=3^{7}$ and $1594323=3^{13}$. We have also estimated that for the prime $p=695759652988215296899225251835887181478451547013,2 p+1=3^{103}$ with 2 as a primitive root. It is worth mentioning here that the powers of 3 in the representations of $2 p+1$ are also primes.

We state the following lemma (see Theorem 2 of [3]) which will be used while proving Theorem 1.1.

Lemma 1.7. Let p be an odd prime such that $2 p+1$ is also a prime. Then, we have
(1) $2 p+1$ divides $2^{p}-1$, if $p \equiv 3(\bmod 4)$;
(2) $2 p+1$ divides $2^{p}+1$, if $p \equiv 1(\bmod 4)$.

2. Proofs of Lemmas 1.2, 1.3 and 1.5

Proof of Lemma 1.2. Let p be an odd prime such that $2 p+1=q^{k}$ for some prime q and for some integer $k \geq 2$. Clearly, $q \geq 3$. Therefore,

$$
2 p=q^{k}-1=(q-1)\left(1+q+q^{2}+\cdots+q^{k-1}\right)
$$

Since $q \geq 3$, by the unique factorization in integers, we conclude that $2=$ $q-1$ and $p=1+q+q^{2}+\cdots+q^{k-1}$. Thus, we get

$$
q=3 \text { and } p=1+3+3^{2}+\cdots+3^{k-1}
$$

Since $3^{2 m} \equiv 1(\bmod 4)$ and $3^{2 m+1} \equiv-1(\bmod 4)$, we see that k must be an odd integer. For otherwise, we get $p \equiv 0(\bmod 4)$, a contradiction to p being prime. Since k is an odd integer, we get $p \equiv 1(\bmod 4)$.

Now, suppose k is not prime, equivalently $k=m n$ for some $1<m, n<$ k, then $3^{m}-1$ and $3^{n}-1$ are factors of $3^{k}-1$ since

$$
3^{k}-1=\left(3^{m}-1\right)\left(1+3^{m}+3^{2 m}+\cdots+3^{(n-1) m}\right)
$$

which is a contradiction.
Proof of Lemma 1.3. Now we prove Lemma 1.3 by induction on k. When $k=1$, it is clearly true. We shall assume the result for $k=\ell$ and we prove for $\ell+1$. Since $2^{\phi\left(3^{\ell}\right)} \equiv 1\left(\bmod 3^{\ell}\right)$, we get

$$
\begin{equation*}
2^{\phi\left(3^{\ell}\right)}=\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right] 3^{\ell}+1 \tag{2.1}
\end{equation*}
$$

Taking the 3 -rd power both sides and since $3 \cdot \phi\left(3^{\ell}\right)=\phi\left(3^{\ell+1}\right)$ we get

$$
2^{\phi\left(3^{\ell+1}\right)}=\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right]^{3} 3^{3 \ell}+\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right]^{2} 3^{2 \ell+1}+\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right] 3^{\ell+1}+1 .
$$

On simplification, we get,

$$
\left[\frac{2^{\phi\left(3^{\ell+1}\right)}}{3^{\ell+1}}\right]=\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right]\left(\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right]^{2} 3^{2 \ell-1}+\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right] 3^{\ell}+1\right) .
$$

And, by induction hypothesis, the lemma follows.
Proof of Lemma 1.5. Now, we prove Lemma 1.5 by induction on k. Since 2 is a primitive root of 3 , we shall assume that 2 is a primitive root of 3^{ℓ} for some integer $\ell \geq 2$ and we prove that 2 is a primitive root of $3^{\ell+1}$.

Let the order of 2 modulo $3^{\ell+1}$ be d. Then, $d \mid \phi\left(3^{\ell+1}\right)=2 \cdot 3^{\ell}$. Since 2 is a primitive root of 3^{ℓ}, we get $\phi\left(3^{\ell}\right) \mid d$ and therefore it is clear that $d=2 \cdot 3^{\ell-1}$ or $2 \cdot 3^{\ell}$. By Lemma 1.3, we see that

$$
3 \nmid\left[\frac{2^{\phi\left(3^{\ell}\right)}}{3^{\ell}}\right] \Longleftrightarrow 3^{\ell+1} \times 2^{2 \cdot 3^{\ell-1}}-1(\text { from }(2.1)) .
$$

Hence, we get $d \neq 2 \cdot 3^{\ell-1}$ and $d=2 \cdot 3^{\ell}$. And therefore 2 is a primitive root of $3^{\ell+1}$.

3. Proof of Theorem 1.1

Proof. Let p be an odd prime such that $2 p+1=q^{k}$ for some odd prime q and for some natural number k.
Case 1. $k=1$, i.e. both p and $2 p+1$ are primes.
Let us assume that 2 be a primitive root of $2 p+1$ and we prove that $p \equiv 1(\bmod 4)$. Suppose, $p \not \equiv 1(\bmod 4)$, then $2^{p} \equiv 1 \bmod 2 p+1$ from Lemma 1.7 which is a contradiction to 2 being a primitive root of $2 p+1$. Conversely, if $p \equiv 1(\bmod 4)$, then again from Lemma 1.7 , we have $2^{p} \equiv-1$
$\bmod 2 p+1$ which implies $2^{p} \not \equiv 1 \bmod 2 p+1$ and hence 2 is a primitive root of $2 p+1$.
Case 2. $k>1$, i.e. $2 p+1=q^{k}$ for some odd prime q and for some natural number $k \geq 2$.

Now, by Lemma 1.2, we conclude that $q=3, k$ is an odd integer and $p \equiv 1(\bmod 4)$. Conversely, from Lemma 1.5 , it follows that 2 is a primitive root of $2 p+1$.

Acknowledgement: We thank Professor M. Ram Murty for carefully going through this manuscript and also for various comments improving the presentation and results. We also thank the reviewers of JRMS and The Mathematics Students for various comments improving the presentation.

References

[1] Aulicino, D. J., and Goldfeld, M., A New Relation Between Primitive Roots and Permutations, The American Mathematical Monthly, 76 (1969), no. 6, 664-666.
[2] Burton, D., Elementary Number Theory, 7th ed. Tata McGraw-Hill, 2012.
[3] Jaroma, J. H. and Reddy, K. N., Classical and alternative approaches to the Mersenne and Fermat numbers, The American Mathematical Monthly, 114 (2007), no. 8, 677-687.
[4] Ram Murty, M., Artin's conjecture for primitive roots, The Mathematical Intelligencer, 10 (1988), 59-67.
[5] Ramesh, V. P., Thangadurai, R. and Thatchaayini, R., A Note on Gauss's Theorem on Primitive Roots, The American Mathematical Monthly, 126 (2019), no. 3, 252254.
[6] Yuan, Y. and Wenpeng, Z., On the distribution of primitive roots modulo a prime, Publicationes Mathematicae Debrecen, 61 (2002), no. 3-4, 383-391.

V. P. Ramesh
Department of Mathematics
Central University of Tamil Nadu
Thiruvarur
TAmilnadu - 610005.
E-mail: vpramesh@gmail.com
R. Thangadurai
Harish-Chandra Research Institute, HBNi
Chhatnag Road, Jhunsi

Allahabad - 211019
E-mail: thanga@hri.res.in
M. Makeshwari

Department of Mathematics
Central University of Tamil Nadu
Thiruvarur
TAMILNADU - 610005.
E-mail: makheswarim@gmail.com

Saswati Sinha
Department of Mathematics
Central University of Tamil Nadu
Thiruvarur
TAMILNADU - 610005.
E-mail: saswati.sinha1994@gmail.com

[^0]: 2010 Mathematics Subject Classification: 11A07, 11A41, 20F05
 Key words and phrases: primitive root, Sophie Germain prime, permutation, orbits of permutation

