
The Mathematics Student ISSN: 0025-5742
Vol. 89, Nos. 3-4, July-December (2020), 171–176

A NECESSARY AND SUFFICIENT CONDITION FOR 2
TO BE A PRIMITIVE ROOT OF 2P + 1
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Abstract. Let p be an odd prime such that 2p+1 is a prime or prime
power. Then, in this article, we prove that 2 is a primitive root of 2p+1

if and only if p ≡ 1 (mod 4).

1. Introduction

Gauss proved that the multiplicative group (Z/nZ)∗ is cyclic if and only
if n = 2, 4, pk or 2pk for all odd primes p and for all positive integers k. For
such integers n, the generators are called primitive roots of n. Indeed, while
studying the periods of rational numbers of the form 1/p for a prime p 6= 2

or 5, Gauss proved the above result and he conjectured that 10 is a primi-
tive root of p for infinitely many primes p. Later E. Artin generalized this
conjecture and gave a heuristic argument for a quantitative form of this con-
jecture and nowadays, it is well-known as Artin’s primitive root conjecture
[4]. Due to these conjectures there are many efforts leading to discoveries
around primitive roots of n, to list a few [1, 4, 5, 6].

We will first set up some notations. For any x ∈ R, [x] denotes the
greatest integer function i.e., the largest integer less than or equal to x. A
prime p is said to be a Sophie Germain prime [2] if 2p+1 is also a prime. It
is expected that there is an infinitude of such primes. Let σ be an element
of the symmetric group Sn. It is easy to observe that the following relation
is an equivalence relation. For i, j ∈ {1, 2, 3, . . . , n}, we say i ∼ j if there
exists k ∈ Z such that σk(i) = j. The equivalence classes of this relation
are called orbits of σ. Furthermore, σ ∈ Sn is said to be a cycle of length `,
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if one of its orbits has ` elements and rest of them have only one element.

In this article, we prove the following results.

Theorem 1.1. Let p be an odd prime such that 2p+1 is a prime or prime
power. Then 2 is a primitive root of 2p+ 1 if and only if p ≡ 1 (mod 4).

Lemma 1.2. Let p be an odd prime such that 2p+ 1 = qk for some prime
q and some integer k ≥ 2. Then q = 3, k is a prime number and p ≡ 1

(mod 4).

Lemma 1.3. For any natural number k, we have[
2φ(3

k)

3k

]
≡ 1 (mod 3),

where φ is the Euler’s totient function.

Corollary 1.4. For any natural number `,[
2φ(3

`)

3`

]
divides

[
2φ(3

`+1)

3`+1

]
.

From Gauss we know that “For a prime p, if a is a primitive root of p
and p2, then a is a primitive root of p` for all ` ≥ 3”. We consider a special
case of this statement, namely for a = 2, p = 3 and in this article we present
the following result which is a stronger result for this special case.

Lemma 1.5. For any k ∈ N, 2 is a primitive root of 3k.

Though, Lemma 1.5 can be proved using the above result of Gauss, in
this article we have invoked Lemma 1.3 to give a self-contained proof of
this lemma. It is to be noted that these lemmas are useful while proving
Theorem 1.1.

In 1969, D. J. Aulicino and Morris Goldfeld [1] have studied the permu-

tation (n!) defined as (n!) =
n−1∏
k=0

(1, 2, . . . , (n− k)), i.e., the product of first

n cycles. They observed a connection between a primitive root of 2n+1 and
the permutation (n!) having only one orbit (which is called as a transitive
permutation) and proved that for any natural number n, the permutation
(n!) is transitive if and only if 2n+ 1 is a prime for which 2 is a primitive
root [1]. Therefore, we have the following natural corollary from Theorem
1.1.
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Corollary 1.6. Let p be an odd prime. Then the permutation (p!) is tran-
sitive if and only if 2p+ 1 is prime and p ≡ 1 (mod 4).

We performed a few computations with primes up to 3 × 106 and
observed that about 4.515% of primes in the above range are such that
2p + 1 is also prime with 2 as a primitive root. Furthermore, the primes
13, 1093 and 797161 are the only primes in the above range for which 2

is a primitive root and 2p + 1 is not prime. It is easy to observe that
for the above listed primes, 2p + 1 is an odd power of 3, namely 27 =

33, 2187 = 37 and 1594323 = 313. We have also estimated that for the prime
p = 6957596529882152968992225251835887181478451547013, 2p+1 = 3103

with 2 as a primitive root. It is worth mentioning here that the powers of
3 in the representations of 2p+ 1 are also primes.

We state the following lemma (see Theorem 2 of [3]) which will be used
while proving Theorem 1.1.

Lemma 1.7. Let p be an odd prime such that 2p+1 is also a prime. Then,
we have

(1) 2p+ 1 divides 2p − 1, if p ≡ 3 (mod 4);
(2) 2p+ 1 divides 2p + 1, if p ≡ 1 (mod 4).

2. Proofs of Lemmas 1.2, 1.3 and 1.5

Proof of Lemma 1.2. Let p be an odd prime such that 2p + 1 = qk for
some prime q and for some integer k ≥ 2. Clearly, q ≥ 3. Therefore,

2p = qk − 1 = (q − 1)(1 + q + q2 + · · ·+ qk−1).

Since q ≥ 3, by the unique factorization in integers, we conclude that 2 =

q − 1 and p = 1 + q + q2 + · · ·+ qk−1. Thus, we get

q = 3 and p = 1 + 3 + 32 + · · ·+ 3k−1.

Since 32m ≡ 1 (mod 4) and 32m+1 ≡ −1 (mod 4), we see that k must be
an odd integer. For otherwise, we get p ≡ 0 (mod 4), a contradiction to p
being prime. Since k is an odd integer, we get p ≡ 1 (mod 4).

Now, suppose k is not prime, equivalently k = mn for some 1 < m,n <

k, then 3m − 1 and 3n − 1 are factors of 3k − 1 since

3k − 1 = (3m − 1)(1 + 3m + 32m + · · ·+ 3(n−1)m)
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which is a contradiction. �

Proof of Lemma 1.3. Now we prove Lemma 1.3 by induction on k. When
k = 1, it is clearly true. We shall assume the result for k = ` and we prove
for `+ 1. Since 2φ(3

`) ≡ 1 (mod 3`), we get

2φ(3
`) =

[
2φ(3

`)

3`

]
3` + 1. (2.1)

Taking the 3-rd power both sides and since 3 · φ(3`) = φ(3`+1) we get

2φ(3
`+1) =

[
2φ(3

`)

3`

]3
33` +

[
2φ(3

`)

3`

]2
32`+1 +

[
2φ(3

`)

3`

]
3`+1 + 1.

On simplification, we get,[
2φ(3

`+1)

3`+1

]
=

[
2φ(3

`)

3`

][2φ(3`)
3`

]2
32`−1 +

[
2φ(3

`)

3`

]
3` + 1

 .

And, by induction hypothesis, the lemma follows. �

Proof of Lemma 1.5. Now, we prove Lemma 1.5 by induction on k. Since
2 is a primitive root of 3, we shall assume that 2 is a primitive root of 3`

for some integer ` ≥ 2 and we prove that 2 is a primitive root of 3`+1.
Let the order of 2 modulo 3`+1 be d. Then, d | φ(3`+1) = 2 · 3`. Since

2 is a primitive root of 3`, we get φ(3`) | d and therefore it is clear that
d = 2 · 3`−1 or 2 · 3`. By Lemma 1.3, we see that

3 6
∣∣∣ [2φ(3`)

3`

]
⇐⇒ 3`+1 6 | 22·3`−1 − 1 (from (2.1)).

Hence, we get d 6= 2 ·3`−1 and d = 2 ·3`. And therefore 2 is a primitive root
of 3`+1. �

3. Proof of Theorem 1.1

Proof. Let p be an odd prime such that 2p+ 1 = qk for some odd prime q
and for some natural number k.
Case 1. k = 1, i.e. both p and 2p+ 1 are primes.

Let us assume that 2 be a primitive root of 2p + 1 and we prove that
p ≡ 1 (mod 4). Suppose, p 6≡ 1 (mod 4), then 2p ≡ 1 mod 2p + 1 from
Lemma 1.7 which is a contradiction to 2 being a primitive root of 2p + 1.
Conversely, if p ≡ 1 (mod 4), then again from Lemma 1.7, we have 2p ≡ −1
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mod 2p + 1 which implies 2p 6≡ 1 mod 2p + 1 and hence 2 is a primitive
root of 2p+ 1.
Case 2. k > 1, i.e. 2p+1 = qk for some odd prime q and for some natural
number k ≥ 2.

Now, by Lemma 1.2, we conclude that q = 3, k is an odd integer and
p ≡ 1 (mod 4). Conversely, from Lemma 1.5, it follows that 2 is a primitive
root of 2p+ 1. �
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