Elementary Number Theory

V.P. Ramesh

Department of Mathematics Central University of Tamil Nadu http://math-analytics.org/vpramesh/

Definition 1 (Zero divisor). Let $n \in \mathbb{N}$ and $0 \neq a \in \mathbb{Z}_n$ is said to be a zero divisor if there exists $0 \neq b \in \mathbb{Z}_n$ such that ab = 0.

Definition 2 (Unit or invertible element). Let $n \in \mathbb{N}$ and $0 \neq a \in \mathbb{Z}_n$ is said to be an unit or invertible if there exists $b \in \mathbb{Z}_n$ such that ab = 1.

Lemma 1. Let $n \in \mathbb{N}$ and $0 \neq a \in \mathbb{Z}_n$ be invertible. Then there exists unique $b \in \mathbb{Z}_n$ such that ab = 1.

Proof. Let $0 \neq a \in \mathbb{Z}_n$. Suppose there exists $b, b' \in \mathbb{Z}_n$ such that ab = ab' = 1.

$$b = b.1$$

= b.(a.b'), since $ab' = 1$
= (b.a).b', by associative property
= 1.b', since $ba = 1$
b = b'

Theorem 1. Let $a \in \mathbb{Z}_n$, then a is unit/invertible if and only if (a, n) = 1.

Theorem 2. Let $a \in \mathbb{Z}_n$, then a is a zero divisor if and only if 1 < (a, n) < n.

Now, \mathbb{Z}_n can be partitioned into three sets namely, $\{0\}$, the set of all units/invertible elements, U_n and the set of all zero divisors, $\mathbb{Z}_n \setminus U_n \cup \{0\}$.

Motivated by Theorem 1, U_n can also be defined as the set of all natural numbers which are relatively prime to n and less than n. Now,

Question 1. Is $\cdot : U_n \times U_n \to U_n$ a function? Is U_n an abelian group? Is U_n cyclic? Give a minimal counter example while proving.

Question 2. $Is + : U_n \times U_n \to U_n$ a function?

Question 3. Is $: \mathbb{Z}_n \setminus U_n \times \mathbb{Z}_n \setminus U_n \to \mathbb{Z}_n \setminus U_n$ a function?

Question 4. Does there exists a bijection between the following pair of sets?

- 1. \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_3$
- 2. \mathbb{Z}_{15} and $\mathbb{Z}_3 \times \mathbb{Z}_5$

Let $n \in \mathbb{N}$, from the fundamental theorem of arithmetic $n = p_1^{q_1} p_2^{q_2} \dots p_k^{q_k}$ for some primes p_1, p_2, \dots, p_k and some natural numbers q_1, q_2, \dots, q_k .

3. \mathbb{Z}_n and $\mathbb{Z}_{p_1^{q_1}} \times \mathbb{Z}_{p_2^{q_2}} \cdots \times \mathbb{Z}_{p_{l_n}^{q_k}}$

Theorem 3 (Chinese Remainder theorem).

1. Let $n_1, n_2 \in \mathbb{N}$ such that $(n_1, n_2) = 1$ and $x, a, b \in \mathbb{Z}$. If

$$x \equiv a \mod n_1$$
$$x \equiv b \mod n_2.$$

Then there exists unique $c \in \mathbb{Z}_{n_1n_2}$ such that $x \equiv c \mod n_1n_2$.

2. Let $n_1, n_2, \ldots, n_k \in \mathbb{N}$ such that $(n_i, n_j) = 1, \forall i \neq j \text{ and } x, a_1, a_2, \ldots, a_k \in \mathbb{Z}$. If

$$x \equiv a_1 \mod n_1$$
$$x \equiv a_2 \mod n_2$$
$$\vdots$$
$$x \equiv a_k \mod n_k$$

Then there exists unique $c \in \mathbb{Z}_{n_1n_2...n_k}$ such that $x \equiv c \mod n_1n_2...n_k$.

3. Let $n \in \mathbb{N}$, $n = p_1^{q_1} p_2^{q_2} \dots p_k^{q_k}$, where $p_1, p_2, \dots p_k$ are primes and $q_1, q_2, \dots q_k$ are natural numbers and $x, a_1, a_2, \dots, a_k \in \mathbb{Z}$. If

$$x \equiv a_1 \mod p_1^{q_1}$$
$$x \equiv a_2 \mod p_2^{q_2}$$
$$\vdots$$
$$x \equiv a_k \mod p_k^{q_k}$$

Then there exists unique $c \in \mathbb{Z}_n$ such that $x \equiv c \mod n$.

Experiment 1. A person had n number of chocolates. When he distributed the chocolates among 3 people, he was left with 1 chocolate and when distributed among 4 people, he was left with 3 chocolates. How many chocolates the person had?

It is equivalent to solve the following system of congruence equations.

$$x \equiv 1 \mod 3$$
$$x \equiv 2 \mod 4$$

Solution.

$$x \equiv 1 \mod 3 \implies x \in \{\dots, (2), 1, 4, 7, (10), 13, 16, 19, (22), \dots\}$$
$$x \equiv 2 \mod 4 \implies x \in \{\dots, (-2), 2, 6, (10), 14, 18, (22), \dots\}$$

Therefore the common solution of the above system belongs to $\{\ldots -14, -2, 10, 22, \ldots\}$. Which can be algebraically written as $x \equiv 10 \mod 12$. The generalisation of this example proves the existence of solution for Chinese remainder theorem. For uniqueness, we prove by contradiction. Suppose $x \equiv 10 \mod 12$ and $x \equiv a \mod 12$ for some $a \in \mathbb{Z}_{12}$, then $10 \equiv a \mod 12$. Hence the uniqueness.

Experiment 2 (Chinese Remainder Theorem). The following table represents a bijection $f_1 : \mathbb{Z}_{35} \to \mathbb{Z}_5 \times \mathbb{Z}_7$ such that

$$f_1(a) = (a \mod 5, a \mod 7)$$

Experiment 3 (Chinese Remainder Theorem). Now, since 2 and 4 are not relatively prime, $f_2 : \mathbb{Z}_8 \to \mathbb{Z}_2 \times \mathbb{Z}_4$ such that

$$f_2(a) = (a \mod 2, a \mod 4)$$

is not a bijection which can be seen from the following table.

\mathbb{Z}_8	\rightarrow	\mathbb{Z}_2	Х	\mathbb{Z}_4
0	\mapsto	(0		0)
1	\mapsto	(1		1)
2	\mapsto	(0		2)
3	\mapsto	(1		3)
4	\mapsto	(0		0)
5	\mapsto	(1		1)
6	\mapsto	(0		2)
7	\mapsto	(1		3)

Question 5. Let $m \mid n \text{ and } g_1 : \mathbb{Z}_m \to \mathbb{Z}_n \text{ such that } g_1(a) = a \mod n$. Is $g_1 a$ function?

Question 6. Let $n \mid m$ and $g_2 : \mathbb{Z}_m \to \mathbb{Z}_n$ such that $g_2(a) = a \mod n$. Is $g_2(a) = a \mod n$.

Definition 3 (Euler's totient function). Let $n \in \mathbb{N}$, Euler's totient function is said to be the number of elements which are relatively prime to n and less than n and it is denoted by $\phi(n)$. In otherwords, $\phi(n) = |U_n|$.

Theorem 4. Let $m, n \in \mathbb{N}$ such that (m, n) = 1. Then there exists a bijection between U_{mn} and $U_m \times U_n$.

Now, from Theorem 4, we can conclude the following.

Lemma 2. Let $m, n \in \mathbb{N}$ such that (m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$. i.e., Euler's totient function is a multiplicative function.

Theorem 5 (Fermat's little theorem). Let $a \in \mathbb{N}$ and p be a prime number. Then $a^p \equiv a \mod p$. Further, if $p \not\mid a$, then $a^{p-1} \equiv 1 \mod p$.

Theorem 6 (Euler's theorem). Let $a, n \in \mathbb{N}$ such that (a, n) = 1. Then $a^{\phi(n)} \equiv 1 \mod n$.

Note. Euler's theorem is a generalisation of Fermat's little theorem because, for a prime $p, p \not\mid a \iff (a, p) = 1$; if (a, n) = 1, then $n \not\mid a$ and the converse of the later statement is false. The counter example is $4 \not\mid 6$ and (4, 6) = 2.

Theorem 7 (Lagrange's theorem). Let G be a finite group and H be a subgroup of G. Then order of H divides order of G.

Question 7. Is Lagrange's theorem a generalisation of Euler's theorem?