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Definition 1 (Zero divisor). Let n ∈ N and 0 6= a ∈ Zn is said to be a zero divisor
if there exists 0 6= b ∈ Zn such that ab = 0.

Definition 2 (Unit or invertible element). Let n ∈ N and 0 6= a ∈ Zn is said to be
an unit or invertible if there exists b ∈ Zn such that ab = 1.

Lemma 1. Let n ∈ N and 0 6= a ∈ Zn be invertible. Then there exists unique b ∈ Zn
such that ab = 1.

Proof. Let 0 6= a ∈ Zn. Suppose there exists b, b′ ∈ Zn such that ab = ab′ = 1.

b = b.1

= b.(a.b′), since ab′ = 1

= (b.a).b′, by associative property

= 1.b′, since ba = 1

b = b′

Theorem 1. Let a ∈ Zn, then a is unit/invertible if and only if (a, n) = 1.

Theorem 2. Let a ∈ Zn, then a is a zero divisor if and only if 1 < (a, n) < n.

Now, Zn can be partitioned into three sets namely, {0}, the set of all units/invertible
elements, Un and the set of all zero divisors, Zn\Un ∪ {0}.

Motivated by Theorem 1, Un can also be defined as the set of all natural numbers
which are relatively prime to n and less than n. Now,

Question 1. Is · : Un × Un → Un a function? Is Un an abelian group? Is Un cyclic?
Give a minimal counter example while proving.

Question 2. Is + : Un × Un → Un a function?
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Question 3. Is · : Zn\Un × Zn\Un → Zn\Un a function?

Question 4. Does there exists a bijection between the following pair of sets?

1. Z6 and Z2 × Z3

2. Z15 and Z3 × Z5

Let n ∈ N, from the fundamental theorem of arithmetic n = pq11 p
q2
2 . . . p

qk
k for some

primes p1, p2, . . . pk and some natural numbers q1, q2, . . . qk.

3. Zn and Zpq11 × Zpq22 · · · × Zpqkk
Theorem 3 (Chinese Remainder theorem).

1. Let n1, n2 ∈ N such that (n1, n2) = 1 and x, a, b ∈ Z. If

x ≡ a mod n1

x ≡ b mod n2.

Then there exists unique c ∈ Zn1n2 such that x ≡ c mod n1n2.

2. Let n1, n2, . . . , nk ∈ N such that (ni, nj) = 1, ∀ i 6= j and x, a1, a2, . . . , ak ∈ Z. If

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ak mod nk

Then there exists unique c ∈ Zn1n2...nk
such that x ≡ c mod n1n2 . . . nk.

3. Let n ∈ N, n = pq11 p
q2
2 . . . p

qk
k , where p1, p2, . . . pk are primes and q1, q2, . . . qk are

natural numbers and x, a1, a2, . . . , ak ∈ Z. If

x ≡ a1 mod pq11
x ≡ a2 mod pq22

...

x ≡ ak mod pqkk

Then there exists unique c ∈ Zn such that x ≡ c mod n.

Experiment 1. A person had n number of chocolates. When he distributed the
chocolates among 3 people, he was left with 1 chocolate and when distributed among
4 people, he was left with 3 chocolates. How many chocolates the person had?

It is equivalent to solve the following system of congruence equations.

x ≡ 1 mod 3

x ≡ 2 mod 4
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Solution.

x ≡ 1 mod 3 =⇒ x ∈ {. . . -2©, 1, 4, 7, 10©, 13, 16, 19, 22©, . . .}

x ≡ 2 mod 4 =⇒ x ∈ {. . . -2©, 2, 6, 10©, 14, 18, 22©, . . .}

Therefore the common solution of the above system belongs to {. . .−14,−2, 10, 22, . . .}.
Which can be algebraically written as x ≡ 10 mod 12. The generalisation of this
example proves the existence of solution for Chinese remainder theorem. For unique-
ness, we prove by contradiction. Suppose x ≡ 10 mod 12 and x ≡ a mod 12 for
some a ∈ Z12, then 10 ≡ a mod 12. Hence the uniqueness.

Experiment 2 (Chinese Remainder Theorem). The following table represents a bi-
jection f1 : Z35 → Z5 × Z7 such that

f1(a) = (a mod 5, a mod 7)

Z35 → Z5 × Z7 Z35 → Z5 × Z7 Z35 → Z5 × Z7

0 7→ (0 0) 12 7→ (2 5) 24 7→ (4 3)
1 7→ (1 1) 13 7→ (3 6) 25 7→ (0 4)
2 7→ (2 2) 14 7→ (4 0) 26 7→ (1 5)
3 7→ (3 3) 15 7→ (0 1) 27 7→ (2 6)
4 7→ (4 4) 16 7→ (1 2) 28 7→ (3 0)
5 7→ (0 5) 17 7→ (2 3) 29 7→ (4 1)
6 7→ (1 6) 18 7→ (3 4) 30 7→ (0 2)
7 7→ (2 0) 19 7→ (4 5) 31 7→ (1 3)
8 7→ (3 1) 20 7→ (0 6) 32 7→ (2 4)
9 7→ (4 2) 21 7→ (1 0) 33 7→ (3 5)
10 7→ (0 3) 22 7→ (2 1) 34 7→ (4 6)
11 7→ (1 4) 23 7→ (3 2)

Experiment 3 (Chinese Remainder Theorem). Now, since 2 and 4 are not relatively
prime, f2 : Z8 → Z2 × Z4 such that

f2(a) = (a mod 2, a mod 4)

is not a bijection which can be seen from the following table.

Z8 → Z2 × Z4

0 7→ (0 0)
1 7→ (1 1)
2 7→ (0 2)
3 7→ (1 3)
4 7→ (0 0)
5 7→ (1 1)
6 7→ (0 2)
7 7→ (1 3)

Question 5. Let m | n and g1 : Zm → Zn such that g1(a) = a mod n. Is g1 a
function?
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Question 6. Let n | m and g2 : Zm → Zn such that g2(a) = a mod n. Is g2 a
function? If so, is it a bijection?

Definition 3 (Euler’s totient function). Let n ∈ N, Euler’s totient function is said
to be the number of elements which are relatively prime to n and less than n and it
is denoted by φ(n). In otherwords, φ(n) = |Un|.

Theorem 4. Let m,n ∈ N such that (m,n) = 1. Then there exists a bijection between
Umn and Um × Un.

Now, from Theorem 4, we can conclude the following.

Lemma 2. Let m,n ∈ N such that (m,n) = 1, then φ(mn) = φ(m)φ(n). i.e., Euler’s
totient function is a multiplicative function.

Theorem 5 (Fermat’s little theorem). Let a ∈ N and p be a prime number. Then
ap ≡ a mod p. Further, if p 6 | a, then ap−1 ≡ 1 mod p.

Theorem 6 (Euler’s theorem). Let a, n ∈ N such that (a, n) = 1. Then aφ(n) ≡ 1
mod n.

Note. Euler’s theorem is a generalisation of Fermat’s little theorem because, for a
prime p, p 6 | a ⇐⇒ (a, p) = 1; if (a, n) = 1, then n 6 | a and the converse of the later
statement is false. The counter example is 46 | 6 and (4, 6) = 2.

Theorem 7 (Lagrange’s theorem). Let G be a finite group and H be a subgroup of
G. Then order of H divides order of G.

Question 7. Is Lagrange’s theorem a generalisation of Euler’s theorem?


